
Journal of Solid State Chemistry 145, 517}540 (1999)

Article ID jssc.1999.8200, available online at http://www.idealibrary.com on
Empirical Potentials for Modeling Solids, Surfaces, and Clusters

Hazel Cox,* Roy L. Johnston,- and John N. Murrell*
*School of Chemistry, Physics and Environmental Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, United Kingdom; and

-School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
*E-mail: kafg3@tc.mols.susx.ac.uk; -E-mail: roy@tc.bham.ac.uk

Received September 29, 1998; in revised form January 26, 1999; accepted February 2, 1999
A review of studies that have been made using the Murrell+
Mottram two-plus-three-body empirical potential is presented.
The explicit many-body nature of the potential is described and
the 5tting of these potentials to experimental data on one or
more solid phases is detailed. Comparisons are made between
potentials for various nonmetallic and metallic elements, from
which trends in the parameters de5ning the potentials can clearly
be seen. Examples of the many applications of these potentials to
the study of solids (relative stabilities and phase transitions),
surfaces (energies, relaxation and reconstructions), melting (both
of the bulk and of the surfaces), and clusters (structures, growth,
and dynamics) are given. ( 1999 Academic Press

1. INTRODUCTION

The structures of atomic solids, their phase transforma-
tions, their surface and defect characteristics, the nature of
their microclusters, and their melting behavior all provide
a rich source for experimental and theoretical studies.
A question examined in many papers has been whether
a potential energy function for the atomic interactions can
rationalize the experimental "ndings. The origins of this
potential, and the di!erence between one atom and another,
lie in the electrons, in particular, how they interact with the
nuclei and with one another; as with molecules, we can
adopt the Born}Oppenheimer approximation and seek to
"nd an interatomic potential which controls the structure
and atom dynamics of the system.

It is important at this point to note a signi"cant di!erence
between molecular and solid state potentials. Most molecu-
les have electronic states which are well separated in energy,
and the interatomic potential is electronic state speci"c (this
is clearly encompassed in the Born}Oppenheimer approxi-
mation); di!erent electronic states will usually have quite
di!erent potentials. Most atomic solids in contrast are
metals, the major exceptions being the Group 14 solids and
the inert gases, and metals have a continuum of electronic
levels whose population varies with temperature. Hence, if
an interatomic potential were de"ned to represent a struc-
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ture at absolute zero, we would certainly expect this poten-
tial to fail to some extent at the melting point of the metal;
we do not know how badly it fails but some indication
would be given by examining the change in the experimental
phonon frequencies on passing from absolute zero to the
melting point. We describe our own studies of melting
later.

The simplest assumption we can make about the poten-
tial is that it is pair additive. However, it is clear that this
is only remotely valid for one family of atomic solids,
namely the rare gas elements. The many-body contribution
to the potential energy of these solids is very small for
all normal (low-energy) structures, and their functional form
and signi"cance have been studied previously (1); we
will not include them in this review. For all other atomic
solids, it is well known that the pair-additive approximation
fails badly, and there are "ve important properties that
show this (2).

The "rst and simplest property is that of structure. Pair-
additive potentials lead to the relative stabilization of
highly coordinated close-packed structures. It is obvious
that a structure such as diamond or graphite will not be
favored by a simple pair potential, so such potentials
cannot be applied to the covalently bonded solids of carbon,
silicon, and many of the other p-block elements. However,
as will be shown below, even for metals, where the close-
packed (or nearly close-packed) structures are consistent
with pair-additive forces, their dynamical and lattice dy-
namical properties are wrongly predicted by simple pair
potentials.

The second property is known as the Cauchy equality.
Cubic solids have three distinguishable elastic constants
which are, by convention, labeled C

11
, C

12
, and C

44
. A pair-

additive (&&central'') potential leads to the result that
C

12
"C

44
. As shown in Table 1, although the Cauchy

equality holds well for rare gas solids (e.g., Ar and Kr) and
some simple metals (such as the alkali metals and alkaline
earth metals), most cubic metals have C

12
/C

44
ratios which

are far from unity. In most cubic solids C
12

is larger than
C

44
, but there are a few metals (such as Ir and Yb) for which
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TABLE 1
Indications of Many-Body Forces in Cubic Metals

Element Structure C
12

/C
44

E
7!#

/E
#0)

LJ fcc 1.00 1.00
Ar fcc 1.12 0.95
Kr fcc 1.08 0.66
Li bcc 1.12 0.21
Na bcc 1.19 0.38
K bcc 1.21 0.42
Ca fcc 1.14 0.38
Sr fcc 1.07 0.38
Al fcc 2.29 0.19
Pb fcc 2.47 0.25
Fe bcc 1.15 0.47
Ir fcc 0.95 0.26
Ni fcc 1.26 0.36
Pt fcc 3.28 0.26
Cu fcc 1.61 0.33
Ag fcc 2.03 0.36
Au fcc 3.89 0.25
Yb fcc 0.59 0.42

Note. Several fcc and bcc metals are compared with the fcc Len-
nard}Jones (LJ) solid (where the interatomic forces are pair additive) and
the fcc rare gas solids Ar and Kr. (Adapted from Ercolessi et al. [2].)
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this is not so and which are said to exhibit a negative
Cauchy pressure, i.e., C

12
!C

44
(0.

A third property of pair potentials is that they predict the
energy of formation of an unrelaxed vacancy (E

7!#
) to be

identical to the cohesive energy of the solid (E
#0)

). As shown
in Table 1, although experimental vacancy formation ener-
gies for rare gas solids are similar to their cohesive energies,
for metals E

7!#
is typically about one-third of E

#0)
. It should

be noted that experimental vacancy formation energies refer
to relaxed vacancies, but calculations indicate that relax-
ation energies are generally small (less than 15% of the
unrelaxed vacancy formation energy) for metallic elements.
Interestingly, while the Cauchy equality is approximately
true for the alkali metals (e.g., Li, Na, and K) and alkaline
earth metals (e.g., Ca and Sr), the ratio E

7!#
/E

#0)
is much

less than unity, which shows that many-body forces are
important even for these simple metals. This leads to the
conclusion that although the existence of a signi"cant Cau-
chy pressure (whether positive or negative) indicates the
importance of many-body forces for a given elemental
solid, the absence (or small magnitude) of a Cauchy pres-
sure does not necessarily mean that many-body forces are
insigni"cant.

The fourth property of pair-additive potentials is that
when applied to unreconstructed surface structures (formed
by taking a slice through the bulk) they predict that the
spacing between the "rst (topmost) and second layer is
always expanded relative to the bulk. The experimental fact,
deduced from di!raction studies, is that the spacing of the
most open surface generally contracts.

Finally, if a pair potential which reproduces the cohesive
energy of the solid is chosen, then computer simulation of
the melting process, using this potential, leads to a melting
temperature in excess of that observed; a factor of 1.5}2.0 is
typical.

We will add a sixth property that arises from our own
studies: if the pair potential is assumed to have a simple
functional form of the type well known for diatomic molecu-
les, with a single turning point at the diatomic equilibrium
distance, then no parameters can be found for this potential
to give a good "t to the phonon dispersion curves. Pair
potentials have been derived with several turning points
(Friedel oscillations) which can "t the phonon curves but
these are de"ned as volume-dependent potentials and they
cannot be used for studies of phase transformations, surfa-
ces, microclusters, etc., where large-density inhomogenieties
are present (3). We see no grounds for encouraging further
use of such potentials at the present time.

Moving beyond pair-additive potentials, there are two
obvious lines of development, both of which have been
studied extensively. The "rst is to adopt a many-body ex-
pansion and hope that this can be terminated at low order;
in practice there have been few studies beyond three-body.

The second approach is to derive a potential for in-
teratomic interactions which takes into account the totality
of the neighbors of a given atom, as in the embedded atom
model (EAM) and other so-called &&glue potentials'' (4). For
practical use, such potentials are generally expressed in the
form of a pair potential plus a functional of the positions of
the neighboring atoms. Usually the functional is restricted
to the "rst one or two shells of neighbors, depending only on
their number and distance from the embedded atom. Em-
bedded potentials of this kind contain no angle-speci"c
terms and this is thought to be a weakness when modeling
transition metals.

In this review, we summarize the results of our own
particular approach to the development of potentials for
atomic solids, in which we derive two-body and three-body
terms by "tting experimental data. We aim to show that the
reproduction of data is very good; that the potentials can be
derived for all atomic solids which have a cubic structure
(they could equally well be applied to noncubic structures,
though the "tting procedure would be more complex), non-
metals, main group, transition and f-block metals, and that
the potentials can easily be applied to structural and dy-
namic problems of atomic systems, without unreasonable
demands on computer time. We will make comparisons
with other potentials where appropriate and we will show
that, in its generality and success, our approach performs
extremely well compared with other models that have been
investigated, within either an explicit or an implicit (embed-
ded atom) many-body potential.
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2. EMPIRICAL FITTING OF THE POTENTIAL
TO EXPERIMENTAL DATA

In this section, we describe the data which are "tted in the
empirical parameterization of our potentials and the im-
portance that we attach to the various types of experimental
observable.

First, we take the lattice energy (bulk cohesive energy,
E
#0)

) and lattice constant (rl) of the cubic solid and use them
to de"ne energy and distance scaling factors, which repro-
duce these quantities exactly. Our "tting procedure cannot
(in its present form) be applied to noncubic structures be-
cause they have more than one lattice constant, although
the potentials may subsequently be used to explore such
lower symmetry structures. Indeed, it is essential that the
potential should give the correct ordering of lattice energies
for a wide variety of cubic and noncubic phases.

Central to (and dominant in) our "tting procedure are the
phonon dispersion curves. These are the vibration frequen-
cies of the solid, expressed in reciprocal space as a function
of the wave vector q. These curves are deduced from the
results of inelastic neutron scattering experiments. In our
"tting procedure, we select a number of points from the
various phonon branches (curves) along the high-symmetry
directions in the Brillouin zone: (q, 0, 0); (q, q, 0); and (q, q, q).
Our reason for placing such high emphasis on phonon
frequencies is that they explore, albeit for small displace-
ments, the potential in all its multidimensionality. We make
here an analogy with molecular potentials: our most exten-
sive knowledge of molecular potential energy curves comes
from the analysis of vibration frequencies, and it has been
shown that, combined with equilibrium distances and dis-
sociation energies, globally valid potentials can be produced
for small molecules (5).

Following the theory of Born and von KaH rmaH n, the
phonon dispersion curves can be expressed in terms of a set
of harmonic force constants between an atom and its neigh-
bors in the lattice. However, direct least squares "tting of
these force constants independently of the phonon frequen-
cies is not generally a satisfactory procedure because, by the
time one has taken a su$cient number of force constants
(i.e., summed out su$ciently far into the lattice) to get
a good "t to the data, one has a multiplicity of sets of force
constants from which to choose (6). Moreover, it is unlikely
that any such phenomenological "tting, which is satisfac-
tory (from a least squares "tting view point), extends su$-
ciently far into the lattice to include all non-negligible force
constants.

Our "tting procedure is di!erent from the above in that
we have a potential which contains a limited number of
parameters; from this the harmonic force constants can be
calculated as far out into the lattice as we wish, without
increasing the number of parameters, and a least squares "t
to the phonon curves can be performed. The number of
parameters is far less than the number of force constants
that appear in the expressions for the phonon frequencies.
In our procedure the force constants are not, therefore, an
independent set.

To provide data for our least squares "tting procedure
phonon frequencies are squared, multiplied by the mass of
the atom, and divided by the lattice constant. This gives
quantities which are linear in the harmonic force constants
and which have the same dimensions (those of pressure) as
the elastic constants. The three independent elastic con-
stants of the cubic solid (C

11
, C

12
, and C

44
) are also in-

cluded in the "tting data. The elastic constants are related to
the slopes of the phonon curves at zero wave vector and are
often obtained from these when direct measurements are
not possible, due to crystals being too small. We usually "nd
that our potential gives a good least squares "t to both
phonon and elastic constant data, but if this is not so, it is
likely that one of the sets of data is in error. Our analysis
shows that elastic constants are more sensitive to force
constants between distant atoms in the lattice than are
phonon frequencies.

The vacancy formation energy is a key quantity to be "tted
in our method because together with the cohesive energy it
gives us separate measures of the total two-body and total
three-body contributions to the potential for the equilib-
rium lattice; this point will be elaborated upon in Section 3.

Experimental vacancy formation energies can be ob-
tained from two types of experiment. One is a comparison of
the temperature dependence of the lattice constant with the
temperature dependence of the density, the latter of which is
in#uenced by the formation of vacancies. It is assumed
in this type of analysis that the number of vacancies is
governed by a Boltzmann factor. A second method involves
measurement of positron lifetimes in the lattice, as these
have been found to correlate with the amount of free space
in the lattice.

The experimental vacancy formation energy includes the
relaxation of the atoms surrounding the vacancy and is
therefore smaller than the unrelaxed vacancy formation
energy (E

7!#
) which we use in our "tting procedure. We

normally "nd, from our potentials, that the relaxation en-
ergy is small (less than 15% of E

7!#
), and we can ignore it.

Alternatively, if we derive a potential assuming the relax-
ation energy is zero, then this potential can be used to
calculate the relaxation and a correction made to the input
data; a single iteration of this kind will be su$cient, given
the accuracy to which such data are known.

Our standard computer program "ts the parameters of
the potential to the data described above using a least
squares procedure based on minimizing the dimensionless
quantity

fsq"+
i
A
P0"4
i

!P#!-#
i

P0"4
i

B
2
w

i
. [1]
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P
i
is the value of the ith datum point and w

i
is the weight

attached to this point. We normally de"ne all weights as
being equal (all w

i
"1) but this constraint can be relaxed in

situations where some of the data are of poor accuracy or of
suspect validity.

All potentials which we adopt must satisfy certain criteria,
apart from having a low (usually the lowest) value for fsq.
These criteria are important because we normally "nd that
there is a range of potentials, with similar fsq values, for
which other key quantities (not used in the "tting) may be
di!erent.

The most important criterion is that no other structure
can be found which has a lower energy than the one for
which the potential has been derived (assuming that this was
known to be the most stable structure). To this end we
routinely calculate the energies and lattice constants of the
following: cubic solids*diamond, simple cubic (sc), body-
centered cubic (bcc), and face-centered cubic (fcc); hexagonal
solids*hexagonal close packed (hcp) and simple hexagonal
(sh); and a number of 1-D chains (linear and zigzag) and 2-D
nets and slabs. The slabs are double layers which corres-
pond to the low-index surfaces ((100), (110), and (111)) of the
fcc lattice. If, for example, we were deriving a potential from
data for an fcc solid then we would reject any potential
which predicts that the bcc structure (say) is more stable
than fcc. We do, however, tolerate a slight preference of hcp
over fcc (by no more than 0.001 eV) because we cannot rely
on the functional form of our potential to reproduce the
small energy di!erences that are generally found between
the fcc and hcp structures.

When calculating structural energies we determine the
cohesive energy as a function of the nearest-neighbor separ-
ation, while maintaining the symmetry of the structure, and
"nd the minimum of the potential energy curve. We there-
fore also have an easy check that our potentials, with low
values of fsq, do not give potential energy curves exhibiting
unphysical behavior; we would normally only accept a po-
tential that gives a smooth curve with a single minimum for
each structure.

The above structural criteria are computationally very
quick to impose and can be applied to any potential with
a reasonably low fsq value. Any potential which passes this
test is then examined further with respect to its predictions
for surface energies and reconstructions. We can easily cal-
culate the energies (E

463&
) of the unrelaxed (100), (110), and

(111) surfaces. The ratio of the (110) and (111) surface ener-
gies is particularly relevant to the so-called (1]2)-missing
row reconstruction of the (110) surface; this reconstruction
occurs only for a few fcc metals (Au and Pt for example) and
we "nd, as do others, that it is only when the ratio
E
463&

(111)/E
463&

(110) is less than J2/3 that reconstruction
occurs (7).

Calculation of the relaxed surface structures is a little
more time consuming but is routinely done for all published
potentials. Several layers of each surface are relaxed and
there are usually some experimental data available pertain-
ing to the top three or four layers. The common "nding that
the top interlayer spacing of the most open surface con-
tracts, compared to the bulk is an important feature of our
potential.

3. THE MURRELL+MOTTRAM MANY-BODY
POTENTIAL

The Murrell}Mottram (MM) potential is expressed as
a sum of two-body and three-body terms. Within this frame-
work, the total potential for the lattice is given by

<
505
"+

i

+
j;i

<(2)
ij

#+
i

+
j;i

+
k;j

<(3)
ijk

[2]

or

<
505
"

1

2
+
i

+
jEi

<(2)
ij

#

1

6
+
i

+
jEi

+
kEi,j

<(3)
ijk

. [3]

In any solid, in which all atoms are equivalent, the poten-
tial energy can be expanded about any arbitrary atom (say
atom 1) and the cohesive energy (a positive quantity) is
obtained as

E
#0)

"!

<
505
N

"!A
1

2
+
jE1

<(2)
1j

#

1

6
+
jE1

+
kE1,j

<(3)
1jkB , [4]

where N is the number of atoms summed over to obtain the
total potential energy, <

505
. The above equation may be

rewritten:

E
#0)

"!A
1

2
+
jE1

<(2)
1j

#

1

3
+
jE1

+
k;j

<(3)
1jkB . [5]

The unrelaxed vacancy formation energy, de"ned as the
energy required to remove an atom from a given bulk site
and then to place it on the surface of the material*at
a position remote from the original site, is given by

E
7!#

"!A +
jE1

<(2)
1j

# +
jE1

+
k;j

<(3)
1jkB!E

#0)
[6]

"!A
1

2
+
jE1

<(2)
1j

#

2

3
+
jE1

+
k;j

<(3)
1jkB . [7]

Hence the total two-body contribution to the potential can
be measured by

<(2)
505

"2(E
7!#

!2E
#0)

) [8]
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and the three-body contribution by

<(3)
505

"3(E
#0)

!E
7!#

). [9]

Our only a priori constraints on the two-body potential
are that it should be broadly typical of the diatomic poten-
tials of stable diatomic molecules and that it should have
few parameters. The #exibility of our potential*its ability
to reproduce a set of input data*is primarily determined
by parameters in the three-body term. The two-body func-
tion that we have chosen is the Rydberg function, which has
been used for simple diatomic potentials. In units of reduced
distance and energy, it has the form

<(2)
ij
D

"!(1#a
2
o
ij
)e~aÈoij, [10]

where

o
ij
"

r
ij
!r

%
r
%

. [11]

This potential has a minimum, of depth D (the diatomic
dissociation energy), at o

ij
"0 (i.e., r

ij
"r

%
, the diatomic

equilibrium distance). The only parameter involved in our
optimization process is a

2
, which determines the range of

the potential and is related to the curvature (force constant)
of the potential at its minimum; D and r

%
are determined by

scaling to the experimental cohesive energy and lattice con-
stant, respectively.

The most important criterion which is applied to the
three-body term is that it is symmetric to permutation of the
three atoms (i, j, k) de"ning each triangle. There are many
ways to establish this, but the most elegant is via the use of
combinations of interatomic coordinates (Q

1
, Q

2
, and Q

3
)

which are irreducible representations of the S
3

permutation
group (isomorphic with the C

3v
or D

3
point groups). For

a given triangle (i, j, k) the Q
i
coordinates are de"ned by:

A
Q

1
Q

2
Q

3
B"A

J1/3 J1/3 J1/3

0 J1/2 !J1/2

J2/3 !J1/6 !J1/6B A
o
ij

o
jk

o
ki
B , [12]

where

oab"
rab!r

%
r
%

. [13]

rab represents one of the three triangle edges (r
ij
, r

jk
, and r

ki
)

and the labels Q
1
, Q

2
, and Q

3
implicitly stand for Q

1
(i, j, k),

etc. It can be shown that all totally symmetric polynomials
in oab can be expressed as sums of products of the so-called
integrity basis (5)

Q
1
, Q2

2
#Q2

3
, Q3

3
!3Q

3
Q2

2
, [14]

where Q
1

is the perimeter of triangle (i, j, k), in reduced
coordinates, and the other two terms measure distortions
away from an equilateral geometry.

If we take, for example, a general cubic term in a poly-
nomial, then to make this totally symmetric with respect to
interchange of atom labeling we could write this in oab coor-
dinates as

a
1
(o3

ij
#o3

jk
#o3

ki
)#a

2
(o

ij
(o2

jk
#o2

ki
)#o

jk
(o2

ij
#o2

ki
)

#o
ki
(o2

ij
#o2

jk
))#a

3
(o

ij
o
jk
o
ki
). [15]

Alternatively, in Q-coordinates we have

b
1
Q3

1
#b

2
Q

1
(Q2

2
#Q2

3
)#b

3
(Q3

3
!3Q

3
Q2

2
). [16]

A further condition to be imposed on<(3)
ijk

is that it should
go to zero as any one of the three atoms goes to in"nity. In
keeping with the functional form adopted for the two-body
potential, we have adopted a general family of three-body
functions

<(3)
ijk
D

"P (Q
1
, Q

2
, Q

3
)F (a

3
, Q

1
), [17]

where P is a polynomial in the Q-coordinates and F is a
damping function which decays exponentially at long range
(high values of the triangle perimeter Q

1
). F contains a single

parameter, a
3
, an exponent which determines the range of

the three-body potential. We have used three types of damp-
ing functions in our work, namely

F (a
3
, Q

1
)"exp(!a

3
Q

1
) exponential

F (a
3
, Q

1
)"1

2
(1!tanh(a

3
Q

1
/2)) tanh

F (a
3
, Q

1
)"sech(a

3
Q

1
) sech.

[18]

Most of the early work with the MM potential was
carried out with the exponential damping function, but one
problem that emerged was that for large negative Q

1
values

(i.e., for triangles for which r
ij
#r

jk
#r

ki
>3r

%
) the function

F may be large and give an overall three-body contribution
(after summing over all triangles) to the potential which
swamps the total two-body potential. If the polynomial P is
negative for these small triangles the three-body potential
may become large and negative, and may lead to the col-
lapse of the lattice. (Note that although the Rydberg func-
tion is positive*repulsive*for r>r

%
, it does not go to
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in"nity as r approaches zero.) To overcome this problem
requires us, in some cases, to introduce an additional &&hard
wall'' to the repulsive side of the two-body term. While we
continue to keep this as an option, it is rarely necessary
when using the tanh function (which goes to the limiting
value of 1 as Q

1
tends to minus in"nity). Even less trouble is

encountered using the sech function, which tends to zero for
large negative Q

1
values. Both the tanh and sech functions

decay as e~aÊQÇ for large Q
1

values. Our favored choice in
recent work has been the sech function, but all three are
usually examined for each element studied.

The polynomial P is normally taken as far as the cubic
level and written

P (Q
1
,Q

2
,Q

3
)"c

0
#c

1
Q

1
#c

2
Q2

1
#c

3
(Q2

2
#Q2

3
)#c

4
Q3

1

#c
5
Q

1
(Q2

2
#Q2

3
)#c

6
(Q3

3
!3Q

3
Q2

2
), [19]

so there are seven coe$cients to be determined. If the data
warrant it (e.g., in some cases where simultaneous "tting is
made to data for two di!erent solid phases) we add the
quartic terms

c
7
Q4

1
#c

8
Q2

1
(Q2

2
#Q2

3
)#c

9
(Q2

2
#Q2

3
)2

#c
10

Q
1
(Q3

3
!3Q

3
Q2

2
). [20]

There is another useful feature of the Q-coordinates that
should be noted here. If we have ab initio data on the energy
of a three-atom structure only for C

2v
geometries (isosceles

triangles for which Q
2
"0) then these are su$cient to allow

the unambiguous determination of coe$cients in a poly-
nomial up to "fth order in Q

i
, because it is only at sixth

order that we have an ambiguity between (Q2
2
#Q2

3
)3 and

(Q3
3
!3Q

3
Q2

2
)2 that can only be resolved using data on

scalene triangles.

4. COMPUTER PROGRAMS

Our work, using the Murrell}Mottram potential has been
accomplished using a suite of "ve FORTRAN computer
programs. A brief description of the functions of these pro-
grams is presented here.

1. CUBEPRO optimizes the potential (i.e., determines
the optimum set of exponents and polynomial coe$cients)
by "tting speci"ed input data, described in Section 2, for fcc
or bcc solids. The program can also be used to "t a potential
simultaneously to data sets from two allotropes (fcc and
bcc), as has been done for Fe, Ca, and Sr.

2. SOLIDS calculates the nearest-neighbor distances and
cohesive energies of a number of one-, two-, and three-
dimensional structures, using the potential output from
CUBEPRO. This program is used to check that the poten-
tial gives sensible ordering of the cohesive energies for
di!erent structures and sensible shapes for their potential
energy curves.

3. SURFPRO calculates the structures and energies of
relaxed surfaces (fcc and bcc) and checks for missing row
reconstruction of the fcc (110) surface. The unrelaxed surface
energies are calculated "rst, and these may be fed into
CUBEPRO and used in the potential optimization process,
though this option is rarely used.

4. CLUSPRO takes potentials generated by CUBEPRO
and calculates energies of microclusters. Small clusters (typi-
cally up to 50 atoms) are constructed as fragments of bulk
solids or are generated randomly. Their geometries are
optimized by quasi-Newton or conjugate gradient energy
minimization, and Monte Carlo or molecular dynamics
simulated annealing. Larger clusters (with up to several
hundreds or thousands of atoms) are generated as concen-
tric polyhedral shells of atoms, which are optimized by
minimizing their energy as a function of the radii of the
individual shells and subshells (sets of symmetry equivalent
atoms).

5. MELTPRO takes potentials derived by CUBEPRO
and uses a Monte Carlo algorithm to examine the melting of
bulk solids and surfaces, by monitoring the variation of
certain structural order parameters as a function of temper-
ature.

The only one of these programs which will now be de-
scribed in more detail is CUBEPRO, because its special
features are directly relevant to the functional form of the
potential we have chosen.

The program optimizes the set of polynomial coe$cients
Mc

i
N to the input data speci"ed earlier, for selected values of

the exponents a
2

and a
3
, a search being made over the

(a
2
, a

3
) grid. This procedure is more e$cient than the alter-

native, in which a
2

and a
3

are included in the set of para-
meters to be optimized by the program, because the fsq
surface is much #atter in exponent (a

2
, a

3
) space than it is in

coe$cient Mc
i
N space. In only a few cases do we "nd that

changes in a
2

and a
3

of less than $0.5 give any marked
di!erence in the quality of "t, whereas changes in Mc

i
N of as

little as 10~2 have a noticeable e!ect on fsq. We normally,
therefore, determine fsq on an integer grid of (a

2
, a

3
)2both

exponents normally lying between 5 and 10*and select the
potentials from regions of low fsq for further examination.

The method for "nding an optimum set of coe$cients
(for "xed a

2
and a

3
) is as follows:

(i) An initial set of coe$cients Mc
i
N is chosen (normally all

zero or values taken from a previous optimization, e.g., from
the preceding point on the (a

2
, a

3
) surface). The potential

energy (in reduced units) is calculated for an initial large
nearest-neighbor separation (o"2r

%
, say) and the potential

energy minimum (i.e., the cohesive energy maximum) is
found by performing a line search minimization, with o de-
creasing in steps of 0.001 and a "nal three-point parabolic
"tting to "nd the minimum. This gives an equilibrium
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nearest-neighbor distance o
%
and minimum potential energy

(in reduced units) <
.*/

. Comparison with the experimental
nearest-neighbor distance (r

//
) and bulk cohesive energy

(E
#0)

) of the reference structure enable the scaling distance
(r
%
) and energy (D) to be obtained as

r
%
"

r
//
o
%

[21]

and

D"!

E
#0)
<
.*/

, [22]

(ii) We now have an initial potential, from which har-
monic force constants can be calculated, and, following the
lattice dynamical method of Born and von KaH rmaH n,
phonon frequencies and elastic constants can be calculated.
The squared di!erences between the experimental and cal-
culated phonon data (as speci"ed earlier) and elastic con-
stants are then summed to give fsq. We also add in the errors
in the vacancy energy and any other property (surface
energy etc.) that is speci"ed.

(iii) A NAG (8) routine (e04fcf) is used to perform a least
squares minimization of fsq as a function of the polynomial
coe$cients Mc

i
N. This is based on making initial very small

changes in Mc
i
N and determining the slopes L( fsq)/Lc

i
and

curvatures L2( fsq)/Lc
i
Lc

j
numerically. The program typically

performs on the order of 100 iterations of fsq in optimizing
the coe$cients of a cubic polynomial to a level at which fsq
changes by less than 0.001 between successive iterations.

A run of approximately 2.5 h for a 10-shell potential or
1 h for a 5-shell potential (on an IBM RS6000 computer)
can produce integer (a

2
, a

3
) grids (with exponents in the
TABL
Optimized Cubic MM Potentials with a Cuto4 of

Ref. a
2

a
3

Fa D (eV) r
%

(As ) c
0

Li (28) 6.5 6.5 e 0.4194 3.1399 0.1818
Na (28) 7 7 e 0.2632 3.7511 0.1805
K (28) 7 7 e 0.2218 4.6543 0.1744
Rb (28) 7.5 7.5 e 0.2157 4.9789 0.2084
Cs (28) 7.5 8.0 e 0.2154 5.3505 0.2306
Ni (74) 8.5 10 s 1.189 2.394 0.226
Pd* (33) 7 10.2 s 0.946 2.667 0.197
Pt* (33) 8.5 9 s 1.613 2.699 0.244
Cu (26) 7 9 s 0.888 2.448 0.202
Ag (26) 7 9 s 0.722 2.799 0.204
Au (26) 9 10 s 1.100 2.785 0.284
Al* (45) 7 8 s 0.9073 2.7568 0.2525
Yb (75) 6 8 e 0.300 4.127 0.128

Note. *Potentials were optimized with a cuto! of 2.25]r
//

(5 fcc shells).
aType of decay function: e, exponential; s, sech.
range 5}10) for the three damping functions de"ned above.
The behavior of the low fsq potentials can then be checked
using the program SOLIDS, in order to remove any that are
unsuitable. However, we stress that acceptable potentials
are always found in the region of low fsq's; we do not accept
potentials from high fsq regions, even if they behave well
according to other criteria.

Finally, we note that a single program can handle fcc and
bcc solids (and simple cubic, if data were available). How-
ever, because the unit cell of the diamond structure has two
(rather than one) atoms in the primitive unit cell, the lattice
dynamics of diamond are more complex than for the other
three (monatomic) cubic solids. For this reason, a separate
program, DIPRO, has been written to generate potentials
for diamond solids (e.g. C, Si, Ge, and Sn) though its basic
structure is identical to that of CUBEPRO.

5. OPTIMIZED MM POTENTIALS

Many-body MM potentials have been derived for over 20
main group, transition metal and lanthanide elements
whose room temperature crystal structures have cubic sym-
metry. The MM potentials are listed in Table 2 (cubic
three-body polynomials) and Table 3 (quartic three-body
polynomials). In those cases where more than one potential
has been obtained for the same element, only the most
recent is reproduced. Other potentials can be found in the
original papers cited in this review. Some examples, chosen
to illustrate our methodology, are discussed below.

5.1. Single Phase Optimization

5.1.1. Potentials for the group 14 elements. The "rst MM
potentials developed were cubic potentials for the group 14
E 2
33rnn (i.e., 11 Shells for bcc and 10 shells for fcc)

c
1

c
2

c
3

c
4

c
5

c
6

1.1328 2.2128 !2.4618 !1.0149 !0.4999 1.9815
1.1755 1.8303 !2.9624 !2.7386 1.3416 2.9384
1.1154 1.8805 !2.8751 !1.8022 0.6185 2.8787
1.3831 2.7395 !3.7531 !2.4645 !0.3562 3.8054
1.6112 4.4354 !4.0538 !3.1694 !1.5639 3.5544

!0.018 5.334 !2.856 !1.294 !0.380 2.381
!0.221 6.516 !0.435 10.273 !14.543 4.463
!0.429 5.814 !2.581 1.268 !7.386 5.401
!0.111 4.990 !1.369 0.469 !2.630 1.202
!0.258 6.027 !1.262 !0.442 !5.127 2.341
!0.385 7.086 !2.799 2.859 !11.273 6.215
!0.4671 4.4903 !1.1717 1.6498 !5.3579 1.6327

1.306 2.953 !1.010 !0.483 !2.841 1.090



TABLE 3
Optimized Quartic MM Potentials with a Cuto4 of 33rnn (i.e., 11 Shells for bcc and 10 shells for fcc)

c
0

c
1

c
2

c
3

c
4

c
5

c
6

Ref. a
2

a
3

Fa D (eV) r
%

(As ) c
7

c
8

c
9

c
10

Cas (25) 6.0 11.5 t 0.3799 3.9372 0.1174 1.7882 10.1597 1.1767 12.7462 !16.7545 7.9449
56.6397 13.9832 !27.2587 33.6836

Srs (25) 6.0 11.0 s 0.3353 4.4714 0.0873 0.1219 2.6310 !0.3362 21.2253 3.0820 0.0446
24.7129 !35.0423 !2.4595 7.9207

Fes (22) 6.55 9.6 e 0.8847 2.6832 0.1760 1.7958 5.0885 !2.9047 !2.2007 !6.1349 2.8605
13.2511 !8.3421 4.5088 !0.5670

C* (17) 8.2 8.2 e 6.298 1.507 8.087 !13.334 26.882 !51.646 12.164 51.629 25.697
!5.964 !7.306 2.208 13.707

Si* (16) 6.5 6.5 e 2.918 2.389 3.598 !11.609 13.486 !18.174 !5.570 79.210 !6.458
23.383 !111.809 9.705 38.297

Ge* (16) 6.5 6.5 e 2.330 2.559 2.986 !13.778 29.843 !14.291 !28.628 61.935 !1.418
33.565 !99.248 8.881 30.103

Sn* (16) 6.25 3.55 e 1.000 2.805 1.579 !0.872 !4.980 !13.145 !4.781 35.015 !1.505
2.949 !15.065 10.572 12.830

Note. *diamond potentials were optimized with a cuto! of 2.6]r
nn

(5 shells); sElements have dual-optimized potentials (i.e., "tted to more than one solid
phase).

aType of decay function: e, exponential; s, sech; t, tanh.
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elements C, Si, and Ge (9, 10). These potentials were "tted to
a limited set of data for the diamond allotropes of each
element. In all cases, the diamond (dia) structure was found
(using the program SOLIDS) to be the most stable cubic
structure, with the cohesive energies (E

#0)
) varying as

dia'sc'bcc'fcc, in agreement with experiment and
with other empirical potentials (e.g., the Stillinger}Weber
(11), Terso! (12), and Biswas}Hamann (13) potentials) and
the density functional calculations of Yin and Cohen (14,
15). In the case of carbon, the graphite structure was (cor-
rectly) predicted to be more stable than diamond, though
the di!erence was overestimated.

Improved quartic potentials for C, Si, Ge, and Sn were
obtained by including the energies and lattice spacings of
other allotropes in the "tting (16, 17). For Si and Ge,
calculated values for the lattice energies and lattice spacings
of the sc, bcc, and fcc structures were used (14), while
experimental data were used for C (graphite) and the tetra-
gonal (b) allotrope of Sn. The best carbon potential gives
a graphite interlayer separation of 3.21 As and an interlayer
interaction energy of 0.001 eV per atom (17). The quartic
potentials listed in Table 3 are taken from Ref. (17) (for C)
and Ref. (16) (for Si, Ge, and Sn).

As shown in Fig. 1, the calculated phonon dispersion
curves for Si agree qualitatively with experimental values,
although the agreement at the Brillouin zone edge is not
very good. A more extensive investigation of Si potentials
was subsequently performed which produced a signi"cant
improvement in the quality of the "t to the phonon disper-
sion curves (18). We have recently investigated the extension
of the MM potential by adding four-body terms, and we
have found that the addition of such terms can lead to an
extra, small improvement in the "t to experimental data for
silicon (18). The general applicability and cost-e!ectiveness
(in terms of extra computational time required for a given
improvement in "t) of four-body potentials are currently
being studied.

5.1.2. Potentials for the alkali metals. Though the MM
potential was initially formulated to study covalent solids,
such as the group 14 elements, it has proved very successful
for modeling the structures and dynamics of metallic ele-
ments. For example, cubic MM potentials were derived for
the alkali metals Li}Cs by "tting phonon frequencies, elastic
constants, lattice energies, and lattice spacings of the bcc
metals. The quality of the "t between calculated and experi-
mental phonon dispersion curves can be seen in Fig. 2, for
the speci"c example of sodium. When tested with the pro-
gram SOLIDS, these potentials all gave very similar ener-
gies for the bcc, fcc, and hcp structures, with the sc,
diamond, and various 2-D structures being considerably
less stable. There is experimental evidence that Li and Na



FIG. 1. Calculated phonon dispersion curves for silicon (diamond structure) along high-symmetry lines [q00], [qq0], and [qqq] in the Brillouin zone
(10). Experimental frequencies are represented by points. The q's are given as fractions of 2n/rl.
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have close-packed structures (fcc or hcp) at very low temper-
atures (19), and pseudopotential calculations for Na and Rb,
by Maysenholder et al. (20), also make the bcc and fcc
structures approximately degenerate.

5.2. Dual Optimization

Many elements are found to adopt more than one struc-
ture, depending on conditions of temperature and/or pres-
FIG. 2. Calculated phonon dispersion curves for bcc sodium along h
Experimental frequencies are represented by circles and triangles. The q's ar
sure (19) and, in a number of cases, lattice dynamical data (in
particular phonon frequencies) are available for some of
these structures. This a!ords us the possibility of simulta-
neously "tting a potential to the structures, energies, and
lattice dynamics of more than one phase. So far, we have
concentrated on dual optimization of potentials (i.e., "tting
to two structures), with the aim of deriving &&global'' poten-
tials which are applicable over a wide range of con"guration
and coordination space.
igh-symmetry lines [q00], [qq0] and [qqq] in the Brillouin zone (28).
e given as fractions of 2n/rl.



FIG. 3. Phonon dispersion curves calculated for (a) bcc a-Fe and (b) fcc
c-Fe along high-symmetry lines [q00], [qq0], and [qqq] in the Brillouin
zone using the dual-optimized MM iron potential (22). Experimental
frequencies are represented by circles and triangles. The q's are given as
fractions of 2n/rl.
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5.2.1. A dual-optimized potential for iron. The study of
iron is of great interest, both experimentally and theoret-
ically, due to its importance in materials science and geol-
ogy. It exhibits many polymorphs so there is a clear need for
a potential which is valid over a range of structures and
which can be used to study the static and dynamic proper-
ties of solid and liquid iron as a function of temperature and
pressure (21).

The normal (ambient temperature and pressure) phase of
iron is a-Fe, which has the bcc structure and is ferromag-
netic. At around 1200 K, iron undergoes a phase transition
to the fcc form, c-Fe, which is paramagnetic (i.e., there is no
long-range spin ordering). Other phases can be prepared
under appropriate conditions of temperature and pressure
(19).

A quartic potential (listed in Table 3) was derived for iron
by simultaneously "tting the phonon frequencies and elastic
constants of both the a- and c-forms of Fe (22). The vacancy
formation energy of a-Fe was also included in the "tting. In
the dual optimization approach, the lattice spacing and
cohesive energy of the low-temperature structure (in this
case bcc a-Fe) are "xed via the scaling parameters r

%
and D,

and the corresponding values for the high-temperature
structure (in this case fcc c-Fe) are allowed to vary. A cuto!
of three times the nearest-neighbor distance (i.e., 11 shells for
bcc and 10 shells for fcc) is generally adopted.

Using the dual-optimized potential, both the bcc and
fcc phases were calculated to be mechanically stable (i.e.,
all phonon frequencies are real and C

11
'C

12
'C

44
'0)

using the dual-optimized potential. The phonon disper-
sion curves for a- and c-Fe are shown in Fig. 3, from
which it can be seen that the "t between theory and experi-
ment is very good. The calculated cohesive energy of
fcc c-Fe (4.26 eV) is slightly smaller than the ("xed) value
for bcc a-Fe (4.28 eV), and the vacancy energy calculated
for c-Fe (1.79 eV) is also smaller than that for a-Fe
(1.81 eV; note that the experimental value is 2.0 eV),
which again is satisfactory. The lattice spacing calculated for
c-Fe is 3.73 As , which compares well with the experimental
value (extrapolated to 1428 K) of 3.68 As . Finally, the Fe
potential reproduces the stability order of other 1-, 2-, and
3-D phases found in previous DFT calculations by Paxton
et al. (23) and by Baskes, using an alternative empirical
potential (24).

This work on iron proved that it was possible to optimize
potentials by "tting, simultaneously to two or more phases,
and we have subsequently derived such global potentials for
calcium and strontium (25).

5.3. Force Constants

The Born}von KaH rmaH n harmonic force constants for
the "rst four shells of fcc Au, calculated using the 10-
shell MM cubic potential (26), are compared to those
calculated by Lynn et al., based on a 4-shell "t to their
measured phonon dispersion curves (27), in Table 4. It
is evident that, while there is good agreement for the "rst
and second shell force constants, the agreement for the
third and fourth shell force constants is poor. Di!erences
are to be expected because our MM potential extends to 10
shells (i.e., a cuto! of 3]r

//
) whereas the phenomenological

force constants are taken to be zero beyond 4 shells. Also,
our force constants are constrained (interrelated) by their
being derived from a physical potential energy function,
while the 12 force constants of Lynn et al. are freely opti-
mized, but with no such physical restraint. Similar con-
clusions have been drawn when comparing MM and
phenomenological force constants for other elements (22)
and we see no reason for assuming that a sharply terminated
set of phenomenological force constants should be any
closer to the true values than our own which extend far into
the lattice.



TABLE 4
Comparison of First to Fourth Shell Born+von KaH rmaH n Force

Constants Calculated for fcc Au (Using the Cubic MM Potential
(26)) with Those Fitted to the Experimental Phonon Frequencies
by Lynn et al. (27)

Shell Force constant MM (26) Ref. (27)

1 XX 1.675 1.643
ZZ !0.572 !0.654
X> 1.932 1.993

2 XX 0.360 0.404
>> !0.118 !0.127

3 XX 0.027 0.080
>> !0.004 0.039
X> 0.007 0.004
>Z 0.009 0.016

4 XX 0.001 !0.075
ZZ 0.001 !0.014
X> 0.001 !0.036

Note. The force constants have units of 104 dyn cm~1, and the symmet-
ries of the force constant matrices have been described by Johnston and
Fang (32).
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5.4. Correlations between MM Potentials

It is interesting to compare qualitative features of and
trends in the parameters of the MM potentials that have
been derived (see Tables 2 and 3) for various groups of
elements.

In considering "rst the cubic MM potentials for Li}Cs
(see Table 2), it is clear that the potentials are qualitatively
very similar, in that all of the polynomial coe$cients have
the same sign for all of the alkali metals, with the exception
of c

5
, which is positive for Na and K, and negative for Li,

Rb, and Cs. The signs of the coe$cients c
0
}c

6
therefore

exhibit the pattern [###!!G#]. The magnitudes of
the coe$cients are also very similar from element to ele-
ment. Though the exponents a

2
and a

3
increase slightly on

descending the group, the range of the potentials actually
increases on going from Li to Cs, because the ratio a/r

%
decreases (28). The similarities and simple trends in the
potentials re#ect similarities in the phonon dispersion
curves and elastic constants (taking into account mass-de-
pendent scaling) of these elements, which in turn re#ect the
similar bonding characteristics of the metals (all are bcc at
ambient temperature and pressure).

The cubic MM potentials for the fcc noble metals Cu, Ag,
and Au are also qualitatively very similar (26), again re#ect-
ing their similar phonon dispersion curves (29). The only
qualitative di!erence occurs for c

4
, which is positive for Cu

and Au, but negative for Ag. The group 10 metals Ni, Pd,
and Pt also adopt the fcc structure, and their cubic poten-
tials are very similar to those of the noble metals. Again, the
main di!erence occurs for c

4
, which is negative for Ni but

positive for Pd and Pt. The cubic potential for aluminum is
qualitatively the same as for the other fcc metals. For Al,
c
4

is positive (as for Cu, Au, Pd, and Pt). The pattern of the
coe$cients c

0
}c

6
for fcc metals may therefore be written

[#!#!$!#].
Comparing the cubic potentials for the bcc alkali metals

with the cubic fcc potentials, we see that the major di!erence
is in c

1
, which is positive for bcc metals but negative for fcc.

Also, while c
4

is negative for the bcc metals, it is usually
positive for fcc. Finally, while c

5
may be positive or negative

for bcc metals, it appears always to be negative for fcc.
The cubic potential for Yb is unusual in that, although the

ground state structure is fcc, the signs of the coe$cients are
the same as those of the bcc alkali metals Li, Rb, and Cs.
This may be because Yb also has a low lying metastable bcc
phase.

In turning to the quartic potentials listed in Table 3, the
coe$cients c

0
}c

6
of the Fe potential (with a bcc ground

state structure) adopt the same pattern ([###!!!#])
as do most of the alkali metals (Li, Rb, and Cs) and Yb.
There is, however, no such similarity between the quartic
potentials of the (fcc) alkaline earth metals Ca and Sr, when
compared either to each other or to the cubic fcc potentials
listed in Table 2. This may be because they have been
optimized to both fcc and bcc structures, but more likely
re#ects the fact that quartic potentials with large quartic
coe$cients (c

7
}c

10
) appear to exhibit little similarity, owing

to the nonorthogonality of the terms in the polynomial.
In comparing the quartic MM potentials for the group 14

elements, listed in Table 3, it is apparent that there are
a number of similarities between these elements, which is
consistent with the fact that all four potentials were opti-
mized by "tting properties of the diamond-structure allot-
ropes. Particularly noteworthy is the very close similarity, in
terms of both signs and magnitudes, of the coe$cients of the
Si and Ge potentials. This similarity is to be expected since
the phonon dispersion curves and elastic constants of Si and
Ge are so similar and can be approximately scaled onto
each other by correcting for the di!erent atomic masses. The
Sn potential di!ers qualitatively from that of Si and Ge only
in the sign of c

2
, which is negative, rather than positive,

although there are signi"cant di!erences in the magnitudes
of some of the coe$cients. These di!erences are consistent
with the di!erent physical properties of Sn and the fact that
the diamond structure is unstable with respect to the metal-
lic b-Sn structure above 286 K (19). The carbon potential
has a di!erent coe$cient pattern from that of the Si and Ge
potentials, there being di!erent signs for c

4
, c

6
, and c

7
. There

are also signi"cant di!erences in the magnitudes of some of
the coe$cients. These di!erences are consistent with the fact
that of the group 14 elements, only carbon has the graphite
structure as the most stable allotrope.
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Finally, it should be noted that the coe$cients c
0
}c

6
for

C}Sn are qualitatively very di!erent from those for the bcc
or fcc metals (which are qualitatively quite similar to each
other). This is not surprising, since one would expect that
the three-body potential, which makes the &&open'' diamond
structure more stable than more close-packed structures,
should be quite di!erent from potentials which stabilize the
geometrically similar bcc and fcc structures (30).

6. STRUCTURES AND STABILITIES OF
SOLID STRUCTURES

If a potential is to be used to study liquids, surfaces,
clusters, etc., it must be applicable over a wide range of
coordination numbers and geometries. As explained in Sec-
tion (4) the stabilities and structures of a number of solid
phases, in addition to those whose properties have been
used in the derivation of the potential, are calculated by the
program SOLIDS.

The structures we have considered are those compared by
Robertson et al. in a study of Al solids using DFT calcu-
lations and empirical glue-type potentials (31). These struc-
tures are now routinely investigated for all elements for
which MM potentials are derived (32).

The three-dimensional structures studied are fcc, bcc, sc,
diamond, simple hexagonal (AAA stacking of triangular
nets), and a concentrated vacancy structure which is gener-
ated by removing one-quarter of the atoms in the fcc lattice
and which consists of a three-dimensional array of vertex-
sharing octahedra. In addition, we also looked at the
idealized hcp lattice (with the cell parameter c

)%9
"

J8/3a
)%9

so that, as in the fcc structure, the 12 nearest
neighbors are all at the same distance.

The two-dimensional structures consist of single layers
(triangular net, square net, hexagonal net [i.e., a single
graphite layer]) and two-layer slabs (triangular slab [i.e.,
eclipsed triangular nets], square slab [eclipsed square nets],
and three slabs ( f100, f110, f111) corresponding to the top
two layers of the fcc (100), (110), and (111) surfaces, respec-
tively. Obtaining reasonable relative energies for these
structures is of great importance if our potential is sub-
sequently to reproduce the properties of surfaces accurately.

Finally the one-dimensional structures are the linear
chain and the zigzag chain (31), which is essentially a ribbon
of edge-sharing triangles.

6.1. Relative Stabilities of Aluminium Solids

All the potentials listed in Tables 2 and 3 give cohesive
energies and interatomic distances which are consistent with
available knowledge, and we illustrate this here for alumi-
num, for which we have the best independent data for
comparison.
Table 5 shows the cohesive energies and equilibrium
nearest-neighbor distances calculated for a variety of real
and hypothetical one-, two-, and three-dimensional Al
structures, using the program SOLIDS and the 5-shell cubic
MM potential for Al (33) listed in Table 2. Table 5 also lists
the coordination numbers (the number of nearest neigh-
bors), number of shells, and total number of atoms out to
a cuto! of 2.25]r

//
(corresponding to a 5-shell cuto! for the

fcc structure). Also given are our calculated equilibrium
nearest-neighbor distances (d

//
) and cohesive energies (;

%
)

as well as the cohesive energies (;
&
) calculated at "xed

nearest-neighbor separation (d
//
"r

//
(fcc)"2.84 As ) so that

comparison can be made with those (;
R
) calculated by

Robertson et al. at "xed separation (actually 2.85 As ) (31).
It is noticeable that there is a general increase in cohesive

energy with increasing coordination number. As can be
seen from Table 5, within each set of structures (3-D, 2-D
slabs, 2-D nets, and 1-D chains) the stability ordering that
we obtain is identical to that of the DFT calculations of
Robertson et al. (31). In fact the numerical agreement is also
good for the 3-D structures (with the exception of diamond,
which we "nd to be signi"cantly less stable). The relative
stabilities of the various sets of structures are also well
reproduced by our calculations, with the exception that we
calculate the f111 slab to be less stable than the 3-D sc
lattice.

Heine and co-workers showed that a simple glue model
based on the coordination number alone gives a good "t to
the ab initio DFT cohesive energies of a wide range of
structures (4, 31, 34). Our many-body MM potential for Al
is in good agreement with the DFT calculations and has
been shown, moreover, to give an excellent "t to elastic
constants, phonon frequencies, and surface energies (32, 33).
The geometry-dependent nature of our potential, which
comes in through the three-body term, results in correct
relative energies (by comparison with the ab initio calcu-
lations) of structures with the same coordination number
but di!ering local geometries.

6.2. The Bain Path for fcc}bcc Interconversion

Several elements adopt two or more solid state structures
depending on temperature and pressure. The alkaline earth
metals calcium and strontium, for example, adopt the fcc
structure at ambient temperatures and pressures but trans-
form to the bcc structure at high ¹ or P (19). For these and
some other elements we have investigated the tetragonal
Bain deformation, which interconverts fcc and bcc via an
intermediate body-centered tetragonal (bct) structure (35).
Other di!usionless transformations can interconvert the fcc
and bcc structures (36), but the Bain path is particularly
interesting as it involves the minimum of atomic movement
and, hence, the minimum strain in the lattice. Here, we
present results for calcium (25).



TABLE 5
Nearest-Neighbor Separations and Cohesive Energies Calculated for Some One-, Two-, and Three-Dimensional Aluminum

Structures, Using the Cubic MM Potential (45)

Structure C.N.a No. shellsb No. atomsc r
//

(As )$ ;
%

(eV)e ;
&
(eV)f ;

R
(eV)g

3-D
fcc 12 5 78 2.84 3.39 3.39 3.36h

hcp 12 7 68 2.84 3.39 3.39 *

fcc vacancy 8 5 58 2.70 3.17 3.04 3.15
bcc 8 5 58 2.81 3.35 3.34 3.29
Simple hexagonal 8 5 70 2.70 3.28 3.13 3.17
sc 6 5 56 2.69 3.05 2.83 2.96
Diamond 4 3 28 2.63 2.16 1.94 2.47

2-D slabs
f111 9 5 36 2.78 2.89 2.88 3.02
¹riangular 9 5 37 2.71 2.82 2.72 2.94
f100 8 5 36 2.75 2.76 2.72 2.90
f110 6 5 22 2.71 2.40 2.33 2.59
Square 5 5 33 2.69 2.55 2.37 2.69

2-D nets
Triangular net 6 3 18 2.73 2.34 2.29 2.54
Square net 4 4 20 2.69 2.03 1.90 2.34
Hexagonal net 3 3 12 2.69 1.46 1.38 2.00

1-D chains
Zig-zag 4 3 8 2.76 1.61 1.59 2.09
Linear 2 2 4 2.74 0.92 0.89 1.33

aCoordination number (number of nearest neighbors).
bNumber of shells out to cuto! (2.25]r

//
).

cTotal number of atoms out to cuto! (including cenral atom).
dNearest-neighbor distance.
eEquilibrium cohesive energy.
fCohesive energy at "xed separation (r

//
"r

//
(fcc)).

g Cohesive energies calculated by Robertson et al. at "xed separation (31).
hN.B. ;

R
(fcc) is "xed at the room temperature value (3.36 eV), while ;

%
(fcc) is "xed at the 0 K value (3.39 eV).
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Figure 4 shows the bct cell (shaded atoms) and the larger
face-centered tetragonal (fct) cell (dotted lines), which is
rotated by 453 with respect to the bct cell. In the bct
de"nition, the bcc structure corresponds to c/a"1, and fcc
to c/a"J2. Thus, the conversion from fcc to bcc consists of
a contraction parallel to the c axis, and an expansion iso-
tropically parallel to the a and b axes. The variation of
E
#0)

with c/a ratio, along the tetragonal Bain path, is shown
in Fig. 5a for calcium (25, 37). The two minima correspond
to the bcc and fcc allotropes. Our calculations predict an
activation energy for the fccPbcc transition of 0.0167 eV
for Ca, with the activation energy in the reverse direction
being 0.0014 eV (25). Figure 5b shows a contour plot of
E
#0)

vs the reduced volume </<
0

(where <
0

is the atomic
volume of the fcc phase) and the c/a ratio. In agreement with
experiment, only two minima are present on the centerd
tetragonal surface. (It should be noted that calculations on
copper by Morrison et al. indicate the presence of a meta-
stable bct phase (38).)
6.3. Thermodynamic Stabilities

To calculate the thermodynamic stabilities of the fcc and
bcc phases and the transition temperature (¹

#
) or pressure

(P
#
) it is necessary to calculate the phonon density of states

(pDOS). Figure 6 shows a comparison of the calculated
pDOS curves for fcc and bcc Ca (25). These curves were
calculated by tetrahedral interpolation over a mesh of
17]17]17 points (fcc) or 21]21]21 points (bcc) in the
the irreducible wedge (1/48th) of the Brillouin zone. These
calculated DOS curves are in good agreement with those
calculated by Heiroth et al. (39), using force constants de-
rived by "tting experimental phonon dispersion curves.

By calculating the di!erence in Helmholtz free energy
(*A"A(bcc)!A (fcc)) as a function of temperature,
a ¹

#
value of 961 K was calculated for the transition from

fcc to bcc Ca (25). The fact that the calculated ¹
#
is higher

than the experimental value (721 K) is probably due to our
potential overestimating of the di!erence in cohesive energy



FIG. 4. Relationship between the body-centered tetragonal (shaded
atoms) and face-centered tetragonal (dotted lines) unit cells.

FIG. 5. The Bain tetragonal deformation path for calcium calculated
using the dual-optimized MM Ca potential (25). (a) Variation of cohesive
energy (;) with c/a ratio along the Bain path. (b) Contour plot of the
centered tetragonal potential energy surface as a function of c/a and the
reduced volume </<

0
, where <

0
is the volume (per atom) of the ground

state fcc structure. The contour spacing is 0.003 eV.
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between the fcc and the bcc structures. We have calculated
that a decrease in *E

#0)
("E

#0)
(fcc)!E

#0)
(bcc)) from 0.014

to 0.011 eV would be su$cient to cause a decrease in
¹

#
from 961 to 721 K (25) (assuming that all other contribu-

tions remain unchanged). If we bear in mind the sensitivity
of the calculated ¹

#
value to di!erences in;, our results are

qualitatively satisfactory.

7. SURFACES: ENERGIES, RELAXATIONS, AND
RECONSTRUCTIONS

The interlayer separations at metal surfaces di!er from
those of the bulk. This is known as surface relaxation, and it
is common for the outer layer spacing of the fcc (110) and
the bcc (100) surface to be less than the equivalent bulk
spacing. Structural changes known as reconstructions,
which involve movements in the surface plane as well as
perpendicular to the surface plane, also occur on some
surfaces, as the atoms "nd a lower energy con"guration. For
fcc and bcc metals, the surface energy (E

4
) generally in-

creases (i.e., the surface becomes less stable) as the coordina-
tion of the surface atoms decrease. In fcc solids, the order of
E
4
is (111)((100)((110), whereas in bcc solids it is (110)(

(100)((111), with the very open bcc(111) surface being
particularly unfavorable. These surfaces are shown in Fig. 7.

Surface relaxations have been studied by optimizing the
atomic positions in a slab of atoms having identical surfaces
in both the #z and !z directions. For potentials derived
with a cuto! of 3]r

//
, the number of layers must be 9, 11,

15, 13, and 9 for fcc(111), fcc(100), fcc(110), bcc(100), and
bcc(110) surfaces, respectively, in order that the center of the
slab has e!ectively bulk character.

For full atom surfaces (i.e., surface layers having the same
translational symmetry as the equivalent bulk) there are no
net forces on atoms in the (x, y) directions so these unrecon-
structed surfaces need only be optimized in the z direction.
We also examine the (1]2) and (1]3) reconstructions of
the fcc(110) surface, in which there are missing rows of
atoms relative to the unreconstructed fcc(110) surface. For
these reconstructed surfaces there is both buckling and x, y
displacement. All relaxed surface energies were calculated
by minimizing the energy using a conjugate gradient routine
(NAG routine e04dgf).

The surface energy is calculated as (33, 40):

E
4
"

NE
#0)

#<

2A
, [23]

where < (the total potential energy of the slab) is a negative
quantity, and E

#0)
(the bulk cohesive energy) is de"ned as

a positive quantity. N is the number of atoms in the slab and
A is the surface area of one side of the slab.

To illustrate our surface calculations we take as examples
Pt and Pd (33). This pair of elements present a challenge, as



FIG. 6. Calculated phonon DOS for fcc (solid line) and bcc (dotted
line) Ca (25).

TABLE 6
Relaxed Surface Energies Es (meV/As 2) for the Low Index

Surfaces of fcc Pd and Pt

(111) (100) (110) (1]2)a (1]3)a

Pd MM (33) 107.12 119.02 126.47 128.29 129.39
SC (42) 61.80 68.66 73.66 74.34
EAM (41) 67.04 72.22 77.40
Expt. (76) 125.00
Expt. (77) 131.08

Pt MM (33) 131.90 152.28 161.79 161.36 161.57
SC (42) 55.18 63.67 67.66 66.66
EAM (41) 69.91 76.65 81.71
Expt. (76) 155.40
Expt. (77) 159.00

aReconstructed (110) surface.
Note. SC, Sutton}Chen potential; EAM, embedded atom method; Expt.,

experimental (average surface) extrapolated to 0 K. N.B. 1 Jm~2"

1 Nm~1"103 erg cm~2"62.42 meV/As 2.
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it is well known that Pt undergoes the (1]2) missing row
reconstruction whereas Pd does not. This subtle balance
between the (110) surface energy and the (1]2) missing row
reconstruction is a stringent test for any potential (7). Our
calculated surface energies are given in Table 6 together
with a comparison with other calculated and experimental
values. In agreement with experiment, we "nd the (1]2)
reconstructed (110) surface of Pd to have a higher surface
energy than the unreconstructed, whereas the (110) surface
of Pt is found to reconstruct. Furthermore, the ratio of the
surface energies of the (111) to the (110) surface is greater
than J2/3 for Pd, indicating that the (110) surface is stable
to the (1]R) reconstruction, whereas the ratio for Pt is less
than J2/3, which signi"es the preference for reconstruction
of the Pt (110) surface (7).
FIG. 7. Top views of the low-index surfaces of fcc and bcc
The Pd (110) surface shows signi"cant relaxation (see
Table 7), and the contraction of the "rst interlayer spacing
and expansion of the second are in excellent agreement with
experiment. The Pd (100) surface also shows considerable
movement. We do not reproduce the observed "rst inter-
layer expansion, but obtain a second interlayer contraction
as observed experimentally; although we underestimate this
movement, other theoretical works predict expansions (41).
There is no consensus on the relaxations of the Pt (100)
surface, and movements at the Pt (111) surface are small, as
shown in Table 7.
metals. The shading represents atoms in di!erent layers.



TABLE 7
Percentage Relaxation of the Three Outermost Interlayer Spacings of Unreconstructed fcc Pd and Pt Surfaces

Surface *d
12

(%) *d
23

(%) *d
34

(%) Method Surface *d
12

(%) *d
23

(%) *d
34

(%) Method

Pd (111) !0.57 0.03 0.02 MM (33) Pt (111) !0.75 0.04 0.01 MM (33)
!1.5 SC (42) !3.3 SC (42)
!2.40 0.20 !0.01 EAM (41) !4.23 0.57 !0.07 EAM (41)

0.0 AES, LEED (78) 1.0 LEED (79)

Pd (100) !0.97 !0.03 0.02 MM (33) Pt (100) !0.85 0.08 0.01 MM (33)
!2.3 SC (42) !5.1 SC (42)
!2.84 0.33 !0.02 EAM (41) !5.55 0.87 0.13 EAM (41)

3.0 !1 LEED (80)
2.25$2.25 LEED (81)

Pd (110) !4.32 0.98 !0.36 MM (33) Pt (110) !5.14 1.45 !0.67 MM (33)
!5.8 SC (42) !12.1 SC (42)
!6.89 1.02 !0.04 EAM (41) !9.18 2.07 !0.51 EAM (41)

!5.1$1.5 1.9$1.5 LEED (82)
!6.0$2.0 1.0$2.0 LEED (83)

Note. Negative values are contractions in interlayer spacings compared to the bulk value. AES, Auger electron spectroscopy; LEED, low-energy
electron di!raction. Other abbreviations are as in Table 6.

532 COX, JOHNSTON, AND MURRELL
Table 8 compares some calculated and experimental
parameters de"ning the relaxed geometries of the Pt (110)-
(1]2) missing-row reconstruction, and these parameters are
shown in Fig. 8. The MM potential underestimates the "rst
and second interlayer relaxations, but correctly predicts
both movements to be contractions. The third layer buck-
TABLE 8
Distortions Accompanying the (132) Reconstruction of the

Pt(110) Surface: Percentage Relaxation of the Two Outermost
Interlayer Spacings (Ddij), the Pairing (p2) and the Buckling (b3),
Relative to the Bulk Spacing of 1.3873 As in z and 1.96 As in x

Pt (110)-(1]2)
Method *d

12
*d

23
p
2

b
3

Theory
MM (33) !4.47 !1.67 0.78 1.51
SC (42) !11.1 !3.7 !1.6 7.2
EAM (84) !18.02 !5.05 !1.53 5.61

Experiment
XRD (85) !19.46 !7.93 2.55 *

LEED (86) !18.74 !12.97 3.57 23.09
MEIS (87) !15.86 4.32 2.04 5.10

Note. Negative values are contractions in interlayer spacings and intra-
layer contractions, and a positive b

3
implies an upward displacement of

third-layer atoms which have no "rst-layer atoms above them. XRD, X-ray
di!raction; MEIS, medium-energy ion scattering. Other abbreviations are
as in Tables 6 and 7.
ling has the correct sign, with the atoms under the missing
row moving upward. Furthermore, the lateral displacement
of the second layer atoms has the correct sign, with displace-
ments being toward the missing row; the Sutton}Chen (42)
and EAM (41) potentials do not give the correct sign of this
displacement. However, we did not obtain any signi"cant
fourth layer pairing nor fourth layer buckling, whereas
experiment shows that this does occur to a small extent.

8. SIMULATION OF LIQUIDS AND MELTING

As noted in the Introduction, melting is a strong indicator
of the importance of many body contributions to the poten-
tial. This is true both for bulk melting and for surface
melting, which is the appearance of a thin liquid-like layer
on top of a solid surface below the bulk melting point. We
illustrate our work by presenting results for Al, which has
FIG. 8. Atomic displacements in the Pt (1]2) missing-row reconstruc-
ted (110) surface relative to ideal bulk positions (33).



EMPIRICAL POTENTIALS FOR MODELING SOLIDS, SURFACES, AND CLUSTERS 533
been studied extensively by means of experiments as well as
theory and computer simulation (see, for example, Refs. (43)
and (44)). All authors report surface melting on Al(110) and
no surface melting on Al(100); we con"rmed these "ndings
in our own study (45).

We simulated both bulk and surface melting using the
standard Metropolis Monte Carlo simulation method (46,
47), with a maximum atom displacement chosen to give an
acceptance rate of between 30 and 50%. Periodic boundary
conditions have been used for surfaces and the bulk, the cell
size being governed by the cuto! on which the potential is
based. For these simulations a potential was optimized with
a cuto! radius (2.25]r

//
) corresponding to interactions

from 5 shells of atoms around any speci"ed atom. We have
con"rmed that this cuto! gives very similar surface e!ects to
those of the larger 10 shell cuto! and makes a signi"cant
saving in computer time.

For bulk melting all the atomic positions of atoms within
a box of 200 atoms were optimized. The cell was constructed
by taking 8 (100) layers of 5]5 atoms with a lattice spacing
appropriate to the liquid density at the melting point.

To simulate surface melting, we allowed movement of
a number of atoms on a "xed bulk structure. By virtue of
our cuto!we were able to obtain convergent behavior of the
"rst few layers by placing 12 (100) layers of 5]5 moving
atoms and 14 (110) layers of 5]4 moving atoms, respect-
ively, on top of 6 layers of "xed atoms. (The thickness of 12
(100) layers is approximately 8.5]r

//
"24.8 As and that of

14 (110) layers is 7]r
//
"20.5 As .) It was assumed that, since

the atoms were allowed to move in the z-direction, the
moving layers should expand to the volume appropriate for
the density at melting. Following the approach of Allen and
Tildesley (46), equilibration was monitored by recording the
instantaneous values of the potential energy. The equilibra-
tion period was extended until this quantity ceased to show
a systematic drift and started to oscillate about a steady
mean value. Snapshots were recorded every 100 Monte
Carlo cycles.

With these snapshots a number of parameters were
monitored to track the &&melting'' of the lattice and sub-
sequent progress to equilibrium:

f an order parameter (indicating how near the structure
within a layer is to the ideal crystal structure),

f the radial distribution function, and
f the z-density pro"le.
The z-density pro"les (which monitor the movement of

atoms through the layers) were used to assign atoms to
layers in order to calculate the order parameter and radial
distribution function. The criterion for an atom to belong to
a layer was that its z-coordinate should lie within the envel-
ope of a peak (de"ning a speci"ed layer at that temperature)
in the pro"le.

It was found that both the bulk and the (100) surface
behaved similarly with temperature. In both cases, the
system gradually disordered up to our predicted ¹
m

and
then a sharp phase transition occurred as order was lost
completely. In contrast, the order parameter for the (110)
surface indicated a sudden disordering for the outer layers
at temperatures lower than ¹

m
. However, from the z-density

pro"le plots it could be seen that vacancies and promotion
of atoms to an overlayer had occurred at temperatures even
lower than this phase change. This implies that the (110)
surface goes through a solid-like structure (with vacancies
and promotion of atoms to an overlayer) before becoming
a lattice liquid. As the temperature increased to ¹

m
a com-

plete loss of order was apparent, indicative of a random
liquid.

As the (100) surface disordered sharply, as in the bulk
calculation, we concluded that surface melting on the (100)
surface does not occur, but surface melting on the (110)
surface does occur, approximately 200 K below the bulk
melting point. These predictions are broadly in agreement
with other studies of these surfaces.

Our predicted bulk melting temperature, from the (100)
surface calculations, of +1275$25 K is +350 K above
the experimental value of 933 K. Our potential, which was
based on room temperature data, therefore overestimated
the melting point by 37%. Although this is much less than
the overestimate (+200%) from two-body potentials alone,
it indicates that in our two-body-plus-three-body formula-
tion of the potential the extrapolation from room temper-
ature to melting temperature conditions should be
accompanied by a reduction of the energy scaling parameter
by about 37%. This implies a reduction in cohesive energy
by the same amount. To test this hypothesis, simulations
were performed with the energy scaling factor D reduced by
37%. The lattice was then found to melt between 900 and
950 K.

This study of Al melting illustrated the ability of our
many-body potential to reproduce the general features of
surface and bulk melting, but it suggests strongly that our
potentials, derived from room temperature data, will have
to be adjusted, perhaps using a simple scaling rule, to give
accurate melting temperatures.

9. CLUSTERS

There is considerable experimental and theoretical inter-
est in the study of clusters, both in the gas phase and in the
solid state (48, 49), due to the central position that they
occupy between molecules and bulk materials and because
of the interest in size-dependent properties (50).

Potentials for small clusters should be electronic state
speci"c. For example, ab initio calculations on C

4
indicate

that there are two low-lying structures which are very close
in energy*a singlet planar rhombus and a triplet linear
structure*though there is some disagreement as to which is
actually the ground state (51). Clearly the potentials
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required to accurately reproduce these minima on the sin-
glet and triplet surfaces are quite di!erent. However, poten-
tials (such as ours) which are derived from crystalline solids
will not be electronic state speci"c, as in the dissociation
limit they will not satisfy the Wigner}Witmer electron cor-
relation rules for breaking chemical bonds (52). We would,
however, expect such potentials to be applicable to clusters
which are su$ciently large that many electronic states are
populated at the temperature at which the studies are made:
certainly as the size of the cluster increases a potential
deduced from bulk properties must become more valid. An
important feature of our potentials is that, although derived
from bulk data, they have been shown to give a good
representation of surface properties, and, as even large clus-
ters have a substantial fraction of their atoms at or near the
surfaces, we expect our potentials to be reliable for cluster
studies.

MM potentials have been used to study the structures,
growth, and dynamics of clusters formed from a range of
metallic and nonmetallic elements, using the program
CLUSPRO (53). Examples of the application of the MM
potential to clusters are described in Sections 9.2 and 9.3
The potentials used in these calculations are given in the
cited papers, and many of them are listed in Tables 2 and 3.

9.1. Cluster Energetics

Within the two-plus-three-body MM model, the total
potential energy of an N-atom cluster is given by summing
over all pairs and triples in the cluster

<
#-64

"

N~1
+
i

N
+
j;i

<(2)
ij

#

N~2
+
i

N~1
+
j;i

N
+
k;j

<(3)
ijk

, [24]

where, generally, only terms with all distances within the
cuto! of the potential are included in the summation. The
average binding energy (i.e., the binding energy per atom) is
a positive quantity, which is de"ned as

E
"
"

!<
#-64

N
. [25]

The second di!erence in the binding energy is de"ned as

D
2
(N)"2E

"
(N)!E

"
(N!1)!E

"
(N#1). [26]

A peak in D
2
(N) indicates an enhanced stability of a cluster

of N atoms with respect to its heavier and lighter neighbors,
which either may arise from the evaporative cooling of the
clusters or may be due to the existence of quasi-equilibrium
conditions in the cluster beam nozzle during cluster forma-
tion (54). It is this quantity, rather than the binding energy
(E
"
), that is generally correlated with experimental mass

spectral intensities.
The average binding energy tells us nothing about the

relative strength of binding of the various inequivalent
atoms in the cluster. To investigate how the binding energy
varies for atoms in di!erent environments (i.e., symmetry-
inequivalent atoms) it is necessary to calculate partial bind-
ing energies. The binding energy of a speci"c atom (i) in
a cluster is given by (55):

e
"
(i)"!A

1

2
+
j

@<(2)
ij

#

1

6
+
j

@ +
kEj

@<(3)
ijk B , [27]

where the prime indicates summation over all atoms
except i. The average binding energy is regained as

E
"
"

+
i
e
"
(i)

N
. [28]

As their environments are identical, the e
"

values for all
symmetry-equivalent atoms are also identical. This is parti-
cularly useful for geometric shell clusters, where a set of
symmetry-equivalent atoms is known as a geometric sub-
shell and the partial binding energy is known as the subshell
binding energy (55). If there are n

k
atoms in subshell k, the

average binding energy can be obtained by summing over
the subshell binding energies (i.e., the partial binding energy
of any atom in the subshell) e

"
(k) (55):

E
"
"

+
k
n
k
e
"
(k)

N
[29]

This principle has been utilized to speed up the radial
optimization of shell clusters within the CLUSPRO pro-
gram (56).

9.2. Full Geometry Optimization of Small Clusters

It is well known that "nding the global minimum on
a multi-dimensional PES is a di$cult problem (57). This is
because the number of structurally distinct isomers (min-
ima) increases quasi-exponentially with increasing nuclear-
ity, due to the high dimensionality (3N!6) of con"guration
space. Hence, not only is it necessary to develop a PEF
which provides a good description of clusters over a wide
range of con"guration space, it is also essential to employ
a suitable method for searching the PE surface.

9.2.1. Random search method. The simplest, unbiased
method for "nding minima on a PES is to perform a large
number of searches from random starting points. In the
random search approach for metal clusters, each starting
structure is generated by picking N sets of coordinates at
random, subject to the conditions that (58): the atoms lie



FIG. 9. Global minima found for Al
2
}Al

20
(modeled with the MM

potential for Al) using the random search method (58).
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within a sphere of radius R
#-64

"r
//

]N1@3; no two atoms
can be closer than r

.*/
"0.7]r

//
; and the shortest distance

between an atom and its neighbors cannot be greater than
r
.!9

"1.3]r
//

(r
//

is the nearest-neighbor distance in the
bulk solid). The "rst condition ensures that the cluster
volume scales (correctly) as N and also that the starting
geometries tend to be pseudospherical and relatively close
packed. The second condition precludes starting geometries
which are too compressed, and hence very high in energy,
and the third condition prevents initial geometries in which
one or more atoms are not connected to the remainder of
the cluster.

The potential energy and the average binding energy are
calculated for the initial, unrelaxed cluster (Eqs. [24] and
[25]); the cluster potential energy is then minimized by
relaxing the cluster geometry, using the quasi-Newton NAG
routine e04kaf or the conjugate gradient algorithm e04dgf
(8), both of which which utilize analytical "rst derivatives of
the potential. The average binding energy of the relaxed
cluster, corresponding to a local minimum on the PES, is
then stored. Since both these routines can converge to
saddle points as well as minima, analytic "rst and second
derivatives of the potential are also used to calculate cluster
vibrational frequencies, the order of a stationary point being
equal to the number of imaginary frequencies.

9.2.2. Other minimization techniques. The crude random
search method often requires a large number of searches to
"nd the GM on the cluster PES, even for as few as 20 atoms.
As the number of isomers increases quasi-exponentially
with N, the number of searches required increases dramati-
cally and the search procedure becomes extremely time
consuming. Also, the con"dence with which we can say that
the global minimum has actually been found decreases with
increasing N. A number of other methods for searching
a cluster PES surface for minima are currently available:
Monte Carlo and molecular dynamics methods (usually
involving simulated annealing) (59), eigenvector following
(60), basin hopping (61), and methods based on genetic
algorithms (62). Recently, Monte Carlo simulated annealing
(58), molecular dynamics simulated annealing (56) and gen-
etic algorithm codes have been written for "nding the global
minima of MM clusters (63, 64).

9.2.3. Small carbon clusters. The quartic MM potential
for carbon listed in Table 3 was used to calculate the relative
stabilities of small carbon clusters with varying topologies
(17). It was found that the binding energies (per atom) of
linear chains increase monotonically with the number of
atoms whereas cyclic clusters display a maximum binding
energy for six-membered rings. Full optimization of carbon
clusters with up to 22 atoms (using a random search algo-
rithm) showed a preference for three-dimensional structures
with "ve- and six-membered rings, with all atoms at least
three-connected. Hobday and Smith subsequently per-
formed a search for the lowest energy isomers of small
carbon clusters (bound with the MM potential) using a gen-
etic algorithm (65). In a number of cases, they found lower
energy isomers than in our previous paper (17), though we
have recently found (using our own genetic algorithm (63))
some isomers which are more stable than those reported by
Hobday and Smith.

In our original paper (17), we performed local minimiz-
ation studies on fullerene cage clusters and found that the
binding energy increased fairly monotonically with cluster
size, in the region N"20}82, although I

)
}C

60
and

D
5)
}C

70
were found to be local maxima in binding energy.

The calculated binding energy of C
60

(7.25 eV) is in good
agreement with experimental measurements (7.063 eV (66)).

9.2.4. Small aluminium clusters. The random search
method has been used to "nd the global minima for alumi-
num clusters with up to 20 atoms, bound by the cubic MM
potential listed in Table 2 (58). The structures corresponding
to these global minima are shown in Fig. 9, and their
average binding energies are plotted in Fig. 10a. After
a rapid initial increase, the binding energy converges slowly
toward the bulk value (E

#0)
"3.39 eV) for fcc Al. An impor-

tant feature of this graph is the small peak at N"13, which
corresponds to a region of enhanced stability. Such regions
are more evident when the second di!erence in the binding
energy is plotted against N, as in Fig. 10b. This plot shows
that there are pronounced peaks in D

2
(N) at N" 4, 6, and

13 and a small peak at 19. This is in marked contrast to the
D

2
(N) graphs for Ca and Sr (where there are signi"cant

peaks at N"7 and N"19 (55)) and may indicate the
reduced stability of "ve-fold symmetric icosahedral packing
in Al compared to Ca and Sr and a preference for fragments
based on fcc packing, such as the octahedron for N"6.
It is interesting to note that the mass spectroscopic



FIG. 10. Stabilities of small Al clusters as a function of size (N) cal-
culated using the MM Al potential (58). (a) Binding energies (E

"
) calculated

for the global minima of Al
3
}Al

20
. (b) Second di!erence (D

2
) in calculated

binding energies for the global minima of Al
4
}Al

20
.
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measurements of Martin and co-workers indicate that large
Al clusters (of hundreds or thousands of atoms) grow as fcc
octahedra, while clusters of Ca grow as noncrystalline
icosahedra up to at least 5000 atoms (67).

9.3. Radial Optimization of Large Geometric Shell Clusters

For larger clusters (with up to 1000 atoms) we have
investigated geometric (or polyhedral) shell structures gen-
erated from the bulk cubic solids (diamond (d), simple cubic
(sc), bcc and fcc) and also for some noncubic structures, such
as icosahedral (ico) and decahedral (dec), with the radius of
each concentric shell being optimized independently. These
radially optimized shell structures can subsequently be fully
optimized by minimizing their energy with respect to car-
tesian displacement of all atoms, as described above for
small clusters.
In CLUSPRO (53, 56), shell clusters are generated by
scaling the coordinates of the polyhedral clusters so that the
shortest interatomic distance in the cluster, r

//
(clus), is equal

to the nearest-neighbor distance in the most stable bulk
structure, r

//
(bulk). A two-stage optimization procedure is

adopted to radially relax geometric shell clusters (55). Such
radial relaxation leaves the point group of the cluster un-
changed.

(i) Partial radial relaxation for an S-shell cluster is
achieved by minimizing the average cluster binding energy
as a function of a set of S scaling factors which de"ne how
expanded or contracted the complete geometric shells are
with respect to the starting con"guration. Minimization is
performed using the conjugate gradient NAG routine
e04ucf. This is a relatively fast procedure, as the number of
variables (scaling factors) is small.

(ii) Full radial relaxation is accomplished by taking the
partially relaxed clusters and allowing the geometric sub-
shells to move independently of each other (by assigning
them separate scaling factors). Energy minimization is again
achieved using the conjugate gradients algorithm. In this
"nal stage, tangential as well as purely radial motion has to
be allowed for atoms which do not lie on symmetry axes
(56). Since point group symmetry must still be preserved,
symmetry-equivalent atoms (subshells) are constrained to
move in symmetry-related ways.

The calculation of the cluster potential energy and the
"rst derivatives of the potential have been greatly acceler-
ated by introducing a cuto! into the two- and three-body
summations and performing these summations about
a single atom in each subshell, making use of Eqs. [27] and
[29] (56).

9.3.1. Magic numbers for geometric shell metal clusters.
There are a variety of structures which may be postulated
for geometric shell metal clusters, such as the cuboctahed-
ron (cub), a fragment of the fcc lattice; the icosahedron (ico);
the truncated decahedron (dec); and the rhombic dodeca-
hedron (rho), a fragment of the bcc lattice. The magic
number (i.e., total number of atoms N) for a cluster consist-
ing of ¹ complete polyhedral shells around a central atom
has been derived by Martin (67):

N"1
3

(10¹3#15¹2#11¹#3), [30]

for cub, ico, and dec shell clusters (e.g., N"13, 55, 147, 309
and 561 for ¹" 1, 2, 3, 4, and 5). For rho shell clusters, the
magic numbers are given by

N"4¹3#6¹2#4¹#1 [31]

(e.g., N"15, 65, 175, 369, and 671 for ¹"1, 2, 3, 4, and 5).
The outer shells of 5-shell ico, dec, cub, and rho clusters are
shown in Fig. 11.



FIG. 11. Representation of the outer shells of some "ve-shell polyhed-
ral clusters. The numbers indicate the total number of atoms in each
cluster.

FIG. 12. Plot of binding energy (E
"
) against N~1@3 for radially opti-

mized shell clusters Fe
N

calculated using the dual-optimized MM Fe
potential (69). The cohesive energy of bulk a-Fe (bcc: 4.28 eV) is indicated
by the arrow at left.

TABLE 9
Fitting Parameters (eV) for Eq. [32] for Icosahedral (ico),

Decahedral (dec), Cuboctahedral (cub), and Rhombic
Dodecahedral (rho) Fe Clusters, with Binding Energies Cal-
culated Using the Quartic MM Potential for Fe (69)

Parameter ico dec cub rho

a 4.248 4.250 4.255 4.284
b !4.180 !4.454 !4.615 !4.635
c !1.761 !2.085 !1.641 !1.695
d 1.755 2.673 2.183 2.021
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Following Northby et al. the binding energy of a pseudo-
spherical N-atom cluster can be written as a polynomial in
N~1@3 (68):

E
"
"

!<
505

N
"a#bN~1@3#cN~2@3#dN~1. [32]

Constant a represents the bulk or volume contribution to
the cluster potential energy (cluster volume <

#
JNJR3

#
,

where R
#
is the radius of the cluster). b represents the surface

or area contribution (cluster surface area A
#
JR2

#
JN2@3),

c is the edge or length contribution (edge length
¸
#
JR

#
JN1@3); and d is the vertex contribution.

9.3.2. Geometric shell iron clusters. The quartic MM
potential (Table 3) for iron (22) was used to calculate the
stabilities and relaxations of geometric shell iron clusters
with up to 5 shells (69). Figure 12 is a plot of binding energy
against N~1@3 and shows that the stability order in this size
regime is ico'rho'dec'cub. The relative stabilization
of icosahedral structures is consistent with the structures
obtained from full geometry optimization of small clusters
(69).

The coe$cients obtained by "tting the binding energies to
Eq. [32] are listed in Table 9. The stability in the in"nite
cluster limit (as measured by a) was found to be ico+
dec(cub(rho, which is to be expected, since the MM
potential for Fe was simultaneously optimized to lattice
dynamical and structural data for both the a and the
c phases (22). The a values for rho and cub shell clusters
were both found to be within 0.2% of the respective cohe-
sive energies (E

#0)
(bcc) and E

#0)
(fcc)) as calculated by the

program SOLIDS. The values of b were found to be nega-
tive, with the magnitudes in the order rho+cub'dec
'ico, re#ecting increasing surface stability on going from
rho to ico clusters, since ico shell clusters are characterized
by 20 close-packed (111)-type faces.

Figure 12 shows that rho clusters are preferred over cub
or dec geometries (i.e., they have higher binding energies)
even at low nuclearities. From the "tting coe$cients in
Table 9, the crossover from ico to rho shell clusters is
predicted to occur at around 2000 atoms (69). Of course, for
speci"c closed geometric shells, the magic numbers for ico
and rho clusters are di!erent, so it may be possible for an
alternation of structure as a function of cluster nuclearity,
for iron clusters. Indeed, mass spectroscopic studies by
Pellarin et al. indicate that, whereas for cobalt and nickel



FIG. 13. Plot of calculated binding energy as a function of number of
atoms for radially optimized silicon shell clusters (modeled with the MM Si
potential) derived from the diamond (d), simple cubic (s), bcc (b), and fcc (f)
solids (71). The bulk cohesive energies are indicated by the arrows at right.
(Inset: The simple cubic Si

27
cluster is the most stable shell structure up to

55 atoms.)
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clusters, intensity variations in the mass spectra can be
explained in terms of icosahedral shell structures, in the case
of iron there is no simple pattern in the mass spectrum (70).
Analysis of the published mass spectrum for iron clusters
reveals that a number of the features (sharp intensity vari-
ations) correspond closely to predicted magic numbers for
complete icosahedral shell clusters, while others are close to
the values expected for bcc-like rhombic dodecahedral clus-
ters (50).

9.3.3. Shell-like silicon clusters. Shell-like clusters have
also been studied for silicon, using the quartic MM poten-
tial listed in Table 3 (71). In this study, a shell was de"ned as
a group of symmetry-equivalent atoms lying on a sphere at
a certain distance (radius) from a central atom, and the
optimized shell structure was obtained by varying the radii
of the shells independently. As an example, a diamond-like
Si

47
cluster consists of concentric shells of 4, 12, 12, 6, and 12

atoms around the central atom, and the whole cluster
(which may be represented as 1:4:12:12:6:12) possesses
¹

$
symmetry. The largest diamond shell cluster that we

studied has 357 atoms (19 shells) and a binding energy
(4.63 eV) which is still short of the bulk Si (diamond) cohe-
sive energy of 4.72 eV, because, even for this relatively large
cluster, approximately one-third of the atoms are on the
surface (i.e., they have unsaturated valencies or dangling
bonds).

Figure 13 shows the binding energies of radially relaxed
geometric shell Si

N
clusters (N4100) derived from the cubic

solids. In this range, the sc and bcc clusters are generally
more stable (i.e., have higher binding energies) than dia-
mond-like clusters. In fact, even fcc Si

43
has a higher binding

energy than diamond clusters of comparable size, and
diamond clusters only become preferred well above 100
atoms. Our results are consistent with the semi-empirical
(SINDO1) calculations of Kupka and Jug (72). We also
found a general upward trend in binding energy for all the
cubic structures, which is to be expected since the average
number of dangling bonds per atom decreases as the ratio of
surface to bulk atoms decreases. Superimposed on the gen-
eral increase in binding energy, there are a number of peaks
of stability corresponding to magic number clusters. The
most prominent of these is the three-shell 27 atom sc cluster
(inset in Fig. 13) which has a binding energy of 4.14 eV/atom
and is the most stable shell structure up to 55 atoms. This
structure is composed of many square rings and has a num-
ber of atoms with coordination numbers higher than four.
The high stability of sc Si

27
is consistent with the MM

results for small Si clusters, where highly connected struc-
tures with four-membered rings were found to be preferred
(71). Finally, it should be noted that ab initio DFT calcu-
lations by RoK thlisberger et al. indicate that Si clusters with
between 30 and 40 atoms have cores which are indeed more
highly connected than in the diamond structure (73).
10. SUMMARY

It has been shown that MM potentials, based on two-
body and three-body terms, can be derived for a wide range
of elemental solids for which phonon data are available. We
have encountered few di$culties in "nding potentials for
simple metals and transition metals, with bcc or fcc struc-
tures. Potentials have also been derived for the group 14
elements having diamond structures, although the "tting to
the phonon dispersion curves at the Brillouin zone bound-
aries is not quite as good as for the metals; there is some
indication that terminating the potential at the three-body
term is less satisfactory for group 14 elements than for
metals.

The parameters (coe$cients) of the three-body terms
show broadly similar patterns among families of elements.
For example, the potentials for Si and Ge are quite similar
(but noticeably di!erent from the carbon potential); likewise
those for the alkali metals and the coinage (noble) metals are
closely related within each group. This property suggests
that it may be possible to "nd simple combining rules for
alloys and intermetallics, at least where the elements are
within the same family; this is currently being explored for
Si}Ge and Cu}Au alloys.

The MM potential, when determined from data on one
solid phase, has been shown to give a good description of
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the energies and structures of other 3-D, 2-D, and 1-D
lattices; particularly noteworthy is the fact that our Al
potential, when applied to other structures, gives results in
good agreement with the results of direct electronic struc-
ture calculations. However, we have also shown that we can
simultaneously "t to data from more than one solid phase,
particularly data for fcc and bcc phases, and we have shown
that both the Bain transition path between these two struc-
tures and the thermodynamic stabilities of the phases can be
reproduced.

An important feature of the MM potential is that it has
been shown to reproduce surface properties for a wide range
of systems; in particular it gives good surface contractions
for unreconstructed surfaces and reproduces the experi-
mentally observed (1]2) missing row reconstructions of the
(110) surfaces of fcc Au and Pt. Because the MM potential
reproduces both bulk and surface properties, we believe it is
well placed to study clusters, and our calculations on these
have been extensive. Results for small clusters, where full
geometry optimizations have been carried out, have shown
that in many cases our potentials predict minimum energy
structures which are very close to the global minima derived
by ab initio calculations, at a fraction of the computational
cost. Radial optimization studies of larger geometric shell
clusters give good agreement with experimental studies of
cluster structure and stability.

We have made only one extensive study of melting and
that has been with the Al potential. This study suggests that
our potentials, which are generally based on room temper-
ature data, will have to be scaled to give good melting
temperatures. This is not unexpected because the con-
tinuum of electronic levels in metals makes it unavoidable
that any Born}Oppenheimer potential would have a signi"-
cant temperature dependence. Perhaps the most important
point established from this melting study is that our poten-
tial has a su$ciently simple analytic form that it can be used
for MC or MD simulations without too great a demand on
computing resources; although three-body terms have to be
summed, their functional form does not make exessive com-
putational demands.

Taking all of these facts into consideration, we claim that
the MM potential has been shown to be at least as good as
any other candidates for general, global empirical poten-
tials; indeed, we know of no other potential which has been
applied successfully over such a large range of elements.
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